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Introduction

The rapid increase in population and economic activity are signs that we challenging the supply of
resources in the near future. Over the last decades, especially Asia-pacific experienced an
exceptional economic growth, which makes this region one of the major drivers towards
overshooting global resource use limits (Schandl and West (2010)). While these are the regions
where most production takes place, also more developed regions take their share in
responsibility of resource scarcity due to increased welfare standards. The climate discussion is
high on the agenda of many countries worldwide. The goal is to protect our planet and limit
temperature increase, but we should not forget that it also puts pressure on the use of resources.

The European Commission adopted the Raw Material Initiative, which should tackle the issue of
access to raw materials in the EU (European Commission, 2019). Policies that support these
efforts in resource efficiency should be supported by detailed data and research on this topic.
Surprisingly, there is not yet a database that maps the flows and stocks of materials. The goal of
the PANORAMA project is to create such a database for EIT KIC Raw Materials. While other work
packages gather data (WP3), process the data and fill in the blanks (WP4), WP5 is responsible for
balancing of the database.

There is a large stream of literature that deals with the issue of balancing a matrix. Each of these
methods have their own advantages and disadvantages. Most balancing procedures are
developed for square (monetary) databases. However, the database developed in Panorama is
not two-dimensional but three-dimensional. Either a new method should be developed for
balancing this database or one of the existing methods requires an update. In order to choose an

appropriate balancing procedure, we first make a thorough review of various methods (Appendix
1).

This report provides a literature review of the existing balancing procedures and
indicates which valuable properties hold for each approach. Section 2.1. gives a
description of the desired balancing properties and Section 2.2 briefly introduces the different
balancing procedures mentioned in the literature review and Section 3 concludes.
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Summary of literature review

This section presents an overiew of the most prominent balancing procedures used for Input-
output tables, which serve as an inspiration for the methodology to be applied in for the
PANORAMA database. Previous literature highlights the importance and contribution of specific
balancing procedures. We compare all these balancing procedures based on a set of criteria in
order to assess their strenghts and weaknessess in terms of the PANORAMA database
requirements.

Balancing properties

For balancing a square matrix, row sums should be equal to the column sums. The literature
review in Appendix A describes eleven balancing procedures which all have their own advantages
and disadvantages. In order to categorize the advantages of these models, six properties have
been defined.

The balancing proporties against which the balancing procedures are held for comparison are:

* Incorporate constraints on arbitrarily sized and shaped subsets of matrix elements,
instead of only fixing row and column sums;

* allow considering the reliability of the initial estimate;

* be able to handle negative values and to preserve the sign of matrix elements if required;

* be able to handle conflicting external data;

* uses limited computational effort;

* isable to balance a three-dimensiontal table

Lenzen et al. (2009) already distinguished five balancing properties. The first four balancing
properties presented above are taken from Lenzen et al. (2009). The latter two, limited
computational effort and the three-dimensional element are added by us. Since the Panorama
database will be a very large database, with at least 200 products, 163 industries and 49 regions
the efficiency of balancing becomes important. Also, as mentioned earlier, the balancing
procedures are defined for two-dimensional tables. Panorama needs to balance a three-
dimensional table.

This activity has received funding from the European Institute of Innovation and
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Balancing procedures

Eleven prominent balancing procedures are chosen for the literature review of balancing
procedures, where we make the distinction between iterative and optimization methods.

Ilterative approaches

RAS is probably the best known iterative balancing procedure. Besides RAS, five modified versions
of the iterative RAS approach are included in the literature review: MRAS, ERAS, TRAS, GRAS,
KRAS. These modifications are given in order of development in time. In general, each later
modification is an improvement of the last modified approach.

In summary, MRAS stands for modified RAS. Contrary to RAS, it takes the reliability of initial
estimates into account by assuming that some elements of the matrix are certain and cannot be
changed. The RAS procedures is performed on the remaining elements of the matrix. Also ERAS
allows to fix interior values of the forecasted matrix to certain values. TRAS stands for three-
staged RAS approach. It includes an extra step in the iterative procedure where the balancing
procedure should also satisfy constraints on aggregated subsets of the matrix. GRAS, a
generalized RAS approach deals with negative values in a square matrix. Rather then assuming
that negative values are fixed and taking out of the balancing procedure, GRAS proposes to use
absolute values for negative elements in the objective function. Lastly, KRAS stands for
Konfliktfreies RAS approach. It extends GRAS by giving a solution for conflicing external
informatino and inconsistent constraints.

For each of these RAS based approach, the step-wise iterative procedure has been presented in
boxes in the text.

Constrained optimization approaches

Besides iterative methods, also constrained optimization approaches aim at solving balancing
problems. An objective function is minimized under a set of constraints. Most optimization
approach own their name to the type of objective function.

Five contrained optimization approaches have been defined in this document: Maximum entropy
(ME), cross-entropy (CE), general cross-entropy (GCE), (generalized) least-square (LS) and the
linear method (LM). The formulations of objective functions of the respective approaches can be
found in Appendix A. This section only highlights the key qualities of each approach.
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The main difference between the ME and the CE approach is that CE takes prior information into
account via the initial estimates. This prior information could be taken fom a database of a
previous year. ME assumes that each element of a m by m matrix is initially equal to 1/m. Both
approaches can be extened by including more information in the constraints. That is, including
information on economic aggregates or uncertainty in aggregates, or keeping zeros in the initial
matrix fixed to zero.

GCE is a variation of the CE approach. CE treats elements of a matrix as probabilities, and the
total matrix is considered the probability distribution. GCE on the other hand, treats each
individual element of a matrix as a random variable that can take a range of values, i.e. the
support vector. This support vector is connected to a symmetric probability vector. In the
balancing procedure, the support vector is assumed given and the corresponding vector of
probabilities is optimized. The expected value that results from optimized probabilities gives the
best estimate of the matrix element.

The LS method assumes to minimize the square distance between the best estimate and the
initial estimate. Also LS can be extended by including more constraints. The extention given in the
literature review additionally makes the distinction between hard constraints and soft
constraints. It thereby takes into account the reliability of the different contraints. The linear
method is a deviation of the LS method. That is, it makes use of the analytical solution of the LS
method. This allows the linear method to iteratively update the matrix, which benefits the
computational effort for balancing a matrix.

Conclusion

Eleven balancing procedures are discussed in the literature review. These balancing procedures
are compared using a selection of desirable properties. This comparison yielded three methods
that satisfy most of these properties: KRAS, generalized Least Squares approach, and the linear
approach.

For the PANORAMA database we chose to use the Linear approach for 3 reasons: (1) it belongs to
one fo the procedures that has most desirable properties, (2) contrary to GLS, the linear approach
is solved in an iterative manner which requires less computational power, (3) the founder of this
approach is a member of the PANORAMA team, facilitating any required adjustments for a 4-
dimensional matrix.
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Appendix A

This Appendix presenting the full literature review is given below.
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Appendix A: Literature review on balancing methods for the
PANORAMA project

H.J. Boonman, J. Dias Rodrigues, J.M. Mogoll6n

January 1, 2020

1 Introduction

The transitions toward a low-carbon, circular economy requires a global understanding of commodity
production and consumption, including the emissions and waste throughout its supply chain, and its
fate after its lifetime. All this information needs to be integrated into a physical stock-flow system
that can ascertain future economy demands together with the pressure on raw material extraction.
This information can be represented in (environmentally-extended) supply-use and input-output
tables (SUT and IOT, respectively), which can give insight into the connection between economic
development, human development and changes in environment (Pauliuk et al., 2015). Much work
has been done regarding collection of physical databases (e.g. MICA, PROSUM, Minerals4EU, or
DESIRE). However, a comprehensive, consistent and balanced supply chain and stock-flow materials
database for many materials is still missing. The PANORAMA project aims to fills this gap by
creating such a database.

Similar systems have been developed for monetary flows. For instance, EXIOBASE is a monetary
multi-regional input-output database that has been developed and updated in three H2020 programs:
EXIOPOL, CREEA and DESIRE (see Tukker et al. (2009), Wood et al. (2015) and Merciai and
Schmidt (2016)). These databases use national (e.g. supply-use tables) and international statistics
(trade, global production) to represent the global economy. Typically, various nations report sectors,
products, and imports/exports in different units, systems, and catergories. Collecting data from
different sources thus results initially in an incomplete, inconsistent and unbalanced database. While
an initial level of harmonization is required bin order to standardize the various data sources, the
database will likely remain undetermined. For this reason, imputation and balancing procedures
are necessary to come to a coherent database, and a comprehensive set used in supply-use and
input-output systems is presented in this review.

This document is constructed as follows: Section 2 introduces some concepts that should be clear
before starting to describe different balancing procedures. That is, the structure of the to be balanced
database, the importance of imputation before starting the balancing procedure and last, the most
important properties that a balancing procedure should fulfil. The literature review is given in
Section 3. Given the description and properties of the existing methods, in Section 3.3 an overview
of all methods is given, based on the properties in Section 2.3. The literature review aims to
accommodate the decision for a balancing procedure in the panorama project.

2 Clarification of basic concepts

Economic balancing routines are developed for monetary databases. In general, the 'monetary
database’ refers to an input-output table or a social accounting matrix (SAM). Section 2.1 describes
the structure of a SAM and the economic meaning of the underlying equations when row sums should
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be equal to column sums. Section 2.2 highlights the importance of imputation. The imputation
problem should be dealt with before starting the balancing procedure. Finally, Section 2.3 explains
the desirable properties for balancing procedures.

2.1 Structure of a Social Accounting Matrix

Most balancing routines are developed for monetary databases, while PANORAMA involves a phys-
ical table. In the literature review we refer to a Social Accounting Matrix (SAM), a monetary
database. However, a SAM can also be created for physical supply and use tables, and thus the
approach is similar. This section explains the structure of a monetary SAM.

The structure of a SAM is given in Table 2.1, after Miller and Blair (2009). The definition of the
matrices that are part of the SAM is given in Table 2.1. A SAM is a square matrix that is balanced
when the row rums equal the column sums. This can be given for each row/column element in Table
2.1.

Consumption account: Q+ M +T;=U+1+ X+ G+ F.

Total consumed equals total produced. That is, total value consumed by industries (U), Capital
accumulation (I), Rest of the World regions (E), Government (G) and Households (F), should be
produced somewhere in the economy. This is either produced by industries in regions that are
included in the supply table (Q), by industries in regions not included in supply table (M), or
otherwise, it goes into import taxes (T7).

Production account: U+ T+ V =Q+ D + H.

Spendings of industries equal earnings of industries. That is, industries spend value on purchasing
intermediate goods (U), paying taxes (T) and other capital and labor expenses in the value added
category (V). Industries earn money by selling products and services (Q), the value of capital goods
owned by industries (D), and by incomes that are generated in RoW regions (H).

Capital accumulation account: I + D+ L+ B =Sp+ Sg+ 5.

Total savings equal total investments. Savings are coming from households (H), government (G)
and from regions that are not part of supply and use tables (F). Investments are made on value of
owned commodities (I), reduced by depreciation of capital (D), investments can be lending to RoW
regions (L) or to domestic governments (B).

Balance of payments account: X + H + Sp =L+ M + O.

Total earned from foreign regions equals total spend on foreign regions. Earned value comes from
export of products to foreign regions (X), Income generated in foreign regions (H), and savings of
foreign regions (S).

Goverment account: G+ Sqg+P=T;+Tg+B+T.

Total earned by governments equals total spend by government. Earnings are coming from tax
incomes. Governments spend money on commodity goods (G), savings (Sg) and social welfare
services (P).

Household accounts: F+S+0+T =P+ W.

Total earned by households equals total spend by households. Earnings are coming from wages (W)
and social welfare services of the government (P). Household dedicate this income on purchase of
commodities and services (F'), savings (S), they spend it in foreign regions (O), or on (income) taxes

(T).
Value added accounts: V =W.
Total use of value added by industries equals total income generated by households.
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Table 1: Structure of Social Accounting matrix (Miller and Blair (2009))

Com. Ind. Cap. ROW Govt. HH VA
Commodities U I X G F
Industries Q D H
Capital accumulation Sk Sa S
Rest of the World M L O
Government T Tg B T
Households P W%
Value added \%

Table 2: Structure of Social Accounting matrix (Miller and Blair, 2009)
Matrix  Description
Total use of goods and services by industries
Total income generated in economy
Import of goods and services from regions not included in supply and use table
Export of goods and services to regions not included in supply and use table
Investment in capital good
Government spending
Total use of goods and services by households
Government transfers to households (e.g. subsidies)
Direct taxation of consumers (e.g. income taxes)
Taxes on imported goods and services
Indirect taxes or taxes paid by businesses
Foreign savings
Taxes on imported goods and services
Household savings
Consumption of capital good (e.g. depreciation)
Lending of resources from regions not included in supply and use table
Government deficit spending
Transfer of money to regions not included in supply and use table
Income generated by households
Income generated by regions not included in supply and use table
Total use of Value Added by industries

HHTEQTRKZOC

5

&

<mgowrogw

Note that for Physical Supply and Use tables, some of the elements in Table 2.1 can initially be set
to zero. That is, those that only refer to monetary flows or services. These include all taxes (77,
Tg, T), all savings and lending, (SF, Sg, S, L), wages (W), and transfers of money (P, O).

2.2 Imputation

In order to get to the best estimate of the PANORAMA database, first steps include gathering
as much relevant data as possible and harmonizing that data. However, data collection is usually
insufficient to produce a determinable system. A best first estimate for acknowledged data gaps
should be utilized. This is called an imputation problem. Only after all data gaps are filled, can the
database be balanced. This important step can help distinguish whether a zero in the final database
represents no flow, or whether it is zero due to a lack of data.

Imputation measures for multi-regional SUT and IO tables in FIGARO distinguish between ’consis-
tency’ and 'manual” imputations (Remond-Tiedrez and Rueda-Cantuche (2019)). The former refers
to data gaps where the total value of an item (e.g. country, industry or product) is known and only
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one sub-element is missing. Given this information, the value of the missing items can be system-
atically imputed (a determined system). Manual imputations require additional assumptions. For
example, the production or use structure of a comparable country with a more detailed product
or industry definition could be used for a country that only provides data on a more aggregated
level.

At the moment this deliverable, the imputations of unobserved data for the PANORAMA project
has not been fully established. This likely will differ according to the scale of the system.

2.3 Balancing properties

From a balancing perspective, the gapfilling procedure represents the initial guess value, which will
be adjusted during the balancing, that is, adjusting the initial estimates such that they fulfil a
determined set of criteria. For instance balancing a SAM (see Table 2.1) implies that the row sum
equals the column sum. All conditions described in Section 2.1 need to be satisfied.

The literature review in Section 3 describes eleven approaches for balancing a Social Accounting
Matrix (SAM). Each method begins with a short description of the underlying model followed by
the desirable properties of each approach. The approaches are finally compared using the criteria
below.

1. incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sus;

2. allow considering the reliability of the initial estimate;

3. be able to handle negative values and to preserve the sign of matrix elements if required;
4. be able to handle conflicting external data.

5. uses limited computational time.

6. is able balance a four-dimensional table.

The first four features are based on literature examples (Lenzen et al., 2009), whereas the last items
are unique to PANORAMA. Each approach is held against these properties. While none of the 11
approaches is able to tick all the boxes, by prioritizing properties for a global physical stock flow
table, the most suitable approach for PANORAMA can be chosen. An overview of all approaches
and corresponding properties is discussed in Section 3.3. The highlights and important aspects of
these features properties are as follows:.

The ability to incorporate constraints on arbitrarily sized and shaped subsets of matrixz elements
is convenient. Only fixing row sums or column sums of a SAM might not give enough information to
find the best estimates for the interior. More information might be available, think about national
bureau of statistics that provide supply and use tables on a more aggregated product and industry
level. These are considered reliable data. The sum of products (industries) in the - to be balanced
- SAM should add up to the aggregated product (industry) level of the national tables. Note that
this turns the two dimensional balancing problem into a three-dimensional problem.

A robust balancing algorithm should consider the reliability of initial estimates. Ideally, an ini-
tial estimate of the interior SAM exists before starting the balancing procedure. This estimate
includes IO elements from different sources and different quality. Gap filling procedures also make
sure that estimates are given for missing data points. The latter gives a less reliable initial estimate
compared to, for example, data points obtained from official bureau of statistics. Indicating which
data points should stay more or less equal to its initial estimate is thereby an important property.
Some methods define a vector of possible outcomes for each matrix element, this turns the two-
dimensional balancing problem into a three-dimensional balancing problem.

This activity has received funding from the European
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A stable balancing method should handle negative values and preserve the sign of a matriz ele-
ment. That is, negative and positive matrix elements cannot switch signs. For some balancing
methods it is impossible to switch signs. Other balancing methods stress that, if necessary, the
approach should allow for switches of signs.

A balancing approach should be able to handle conflicting information. Fixed row and column
sums are examples of external constraints. In combination with extra constraints on subsets of the
matrix, constraints can be conflicting. Again a balancing routine should be flexible to allow for
different reliability weights for each constraint. These constraints should not be relaxed. For other
constraints, a level of flexibility (depending on its uncertainty) should be defined.

Although computational power is increasing rapidly, the computational time of finding the best
estimate is also an important factor, especially for very large SAMs.

The sixth property, being able to balance a four-dimensional table, is an additional property re-
quired for the PANORAMA project. A regular SAM is a two-dimensional table. PANORAMA,
on the other hand, aims to find best estimates for a three-dimensional table. That is, for each
material element (e.g. cu, al, co) physical use and supply information is given in a separate matrix.
The sum over the third dimension of the matrix adds another constraint. The matrix becomes
four-dimensional when a balancing procedure should satisfy property 1 and 2.

3 Literature review of existing balancing methods

In the EXIOBASE string of projects, various balancing routines have been developed that allow
detailing IOTs on the basis of auxiliary, more detailed information. In the PANORAMA project,
we build upon this earlier developed knowledge. However, existing routines can be further extended
and tailored for the current project. This document gives a thorough overview of existing balancing
techniques.

This document makes the distinction in balancing methods by defining iterative and optimization
methods. Bacharach has shown that these two type of approaches are in fact the same. It was
shown that RAS, a well-known iterative balancing approach, can also be written as a constrained
optimization problem. Other iterative balancing approaches are extensions of RAS.

The notations used for the different balancing procedures have been made uniform in the literature
review. An overview of notations is given in the nomenclature in Appendix A. In general, a scalar
is denoted in italics and a multi-dimensional object in bold. Lowercase denotes a vector and
uppercase a matrix. Dimensions of a matrix element are given in subscripts. Superscripts denotes
another version of the matrix. Superscript * indicates it is the best estimate of that variable and
superscript (0) indicates the initial guess of a variable. A vector placed between arrow brackets
(<>) refers to a diagonalized vector.

3.1 Iterative methods

Iterative methods are used to solve a linear system problem by step wise getting closer to the final
solution. Most iterative methods terminate when the residual value of the estimated matrix minus
the matrix with target values is sufficiently small. This section discusses the RAS approach and its
extensions. For each, a theoretical description of the method is given and its deviation from earlier
defined iterative methods.
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3.1.1 RAS

The ultimate goal of balancing a square Social Accounting Matrix (SAM) is to find an interior that
matches the sum of rows and columns. Naturally, the column sums should equal the row sums,
because total produced is somewhere either consumed or stored. Assume existing SAM transaction
matrix T, where the row and columns sums are not (yet) equal.

Zt,»j # thi (1)

Based on most reliable raw input data, column and row sums should be fixed and equalized (resulting
in vector y*). Now, the sum of the interior does not match the new row and column sums anymore.
The goal is to find an interior that matches target vector y*.

Rather than optimizing matrix elements ¢;;, often the elements a;; of a corresponding matrix of
coefficients A is being optimized. The relation between a;; and ¢;; is as follows:

tij = a;;Y;- (2)

The RAS methodology finds the optimal matrix of coefficients (A*) by means of biproportional row
and column sum operations (Robinson et al. (2001)), such that

a?j =TiGi;jS;-. (3)

Step 0: Initialize. Set n=0. Initial value of the coefficient matrix equals the existing matrix:
A*0) — A

Step 1: Row scaling. Set
n=n+1,
R*" =< Ae >< A*("~VDe >
A*(n70.5) _ R(n)A*(nfl)

Step 2: Column scaling. Set
S*() —< &' A >< &/ A*(n05) > |
Ax(n) — A*(n—0.5)g*(n)

The advantage of RAS methodology is twofold. On the one hand it is a fairly easy approach that
requires only a minimum amount of initial information. Only information on row and column sums
is required, and an initial guess for the coefficients matrix. Also, negative values are not possible if
they do not exist in the initial guess matrix.

This approach satisfies the following conditions from Section 2.3:
e be able to handle negative values and to preserve the sign of matrix elements if required.

e uses limited computational time.

3.1.2 MRAS

MRAS stands for modified RAS approach (Paelinck and Waelbroeck (1963)). The traditional RAS
approach cannot deal with elements from coefficient matrix A that are certain. That is, to take the
reliability of initial estimates into account. One would like to keep those elements fixed, while RAS
methodology cannot make this guarantee.
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In the MRAS approach, elements from coefficient matrix A that are certain are set to zero in the
interior, and are subtracted from the corresponding target column sum and row sum y*. This
results in adjusted matrix A(®) and alternative target row sum y; and target column sum y;. The
traditional RAS methodology is applied to adjusted matrix A9, which ensures that zeros remain
zero. The certain data points are introduced back into the balanced matrix. The final matrix is
still balanced, because certain values had initially been subtracted from the target row and column
sum.

Advantages of this approach over RAS is that it is able to deal with the reliability of the initial
estimates. Disadvantage of this approach is that when too many sources are labeled as certain,
only few elements in the matrix remain flexible for the RAS methodology. As a result, those
elements will deviate extensively from their initial guess in matrix A, and thereby results in unreliable
elements.

This approach satisfies the following conditions from Section 2.3:
e allow considering the reliability of the initial estimate;
e be able to handle negative values and to preserve the sign of matrix elements if required.

e uses limited computational time.

3.1.3 ERAS

Similar to the MRAS approach, in the ERAS approach interior values of the forecasted matrix are
fixed to known values (Lahr and de Mesnard (2004)). This approach has been developed in the
unpublished PhD dissertation of Philip Israilevich ”a Biproportional Forecasting of Input-Output
Tables”. Israilevich was the PhD student of Ronald E. Miller and Peter Blair. Little information can
be found online on this approach, which makes this approach unsuitable for the Panorama project.
We have added this approach in this literature research for the sake of completeness.

This approach satisfies the following conditions from Section 2.3:
1. allow considering the reliability of the initial estimate;
2. be able to handle negative values and to preserve the sign of matrix elements if required;

3. uses limited computational time.

5.1./ TRAS

TRAS stands for three-staged RAS approach (Gilchrist and St Louis (1999)). This approach extends
RAS and MRAS, because it allows to fix certain aggregated information on submatrices of the SAM,
rather than just individual elements (like MRAS).

Assume that some elements of Social-Accounting matrix T are certain. These elements are placed in
matrix TC which has the same size as T. Certain values are set to zero in the initial table which is
used for the RAS procedure, denote this table by T?. The elements in TC are also subtracted from
the corresponding target column sum and row sum y* (so far the same as using MRAS). Then the
iterative RAS approach is used for the balancing, however, with one addition. The TRAS approach
adds a thirds step to the two-step RAS approach where it allows to place a constrained on a subset
of matrix elements.

Assume exogenous aggregate table TS, which has for example a less detailed product and sector
definition. However, the aggregate values in this table are considered trustworthy. Summation of
an optimized SAM T* should therefore add up to the values in table T¢. Let U and V represent
the known row and column aggregator matrices. For best estimate T* it should hold that
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TG = UT*V. (4)

Then, the certain individual elements in matrix 7¢ should be consistent with the aggregates in
matrix TG, Define table T¢C = TS — UTCV, which gives the aggregates of the unknown cells of
TC. In the RAS procedure, best estimate T7* is found, where T* = T7* 4+ TC. Optimized table
Q* should fulfill the following condition for the third iteration step

T¢¢ =UT™V. (5)

In summary, including the third iteration step, the procedure for TRAS is given by the following
three steps:

Step 0: Initialize. Set n=0. Initial value of the coefficient matrix equals the existing matrix:
A0 = A

Step 1: Row scaling. Set
n=n-+1,
R*™ =< Ae >< A*("De >,
A*(n70.5) —_ R(n)A*(nfl)

Step 2: Column scaling. Set
S*(n) =< e'A >< e/A*(n—O.5) >,
A*(n—0.25) — A*(n—OS)s*(n)

Step 3: incorporate aggregate matrix A%, Set
GO = AGC %) UA*(n_O'25)V,
Q™ = TGV,
A*(n) _ Q*(n) o A*(n—0.25)

Again, angled brackets <> denote a diagonal matrix, where vector elements are presented on the
diagonal and zeros elsewhere, e denotes a vector with ones. In Step 3, @ denotes an element wise
division (Hadamard division), o and element wise product (Hadamard product), A€ denotes the
coefficient matrix of matrix TSC, and U and V transform matrix Q* to the original size of matrix
A.

This approach satisfies the following conditions from Section 2.3:

1. incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

2. allow considering the reliability of the initial estimate;

3. be able to handle negative values and to preserve the sign of matrix elements if required;

3.1.5 GRAS

GRAS stands for generalized RAS approach (Junius and Oosterhaven (2003)). This approach deals
with negative values in a SAM. A more simple approach to deal with negative values is to assume
that negative values are certain and apply the MRAS approach. That is, set the negative values
to zero in the social accounting matrix, resulting in initial matrix T(9) and subtract the negative
values from the target row and column sum. Place the negative values in matrix T€. The RAS
procedure is applied to coefficient matrix A% of SAM T°. Disadvantage of this approach is that
negative values are fixed and cannot positively or negatively affect the other elements in the SAM,
they are in fact ignored. Junius and Oosterhaven (2003) propose a different approach for dealing
with negative numbers. It proposes to include absolute values for negative elements in the objective
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function. For this, matrix A is split in a positive part (P) and a negative part (IN). Difference
A =P — N is balanced, where it should hold that

(RPS — R™!'NS™Y)i = ey;*, (6)
i(RPS — RTINS} = ey;*, (7)

where y;* the vector with row sums, y;* the vector with column sums, e the basis of a natural
logarithm, and i is the summation vector. Below, the iteration process has been described:

Step 0: Initialize. Set n=0. Initial value of the coefficient matrix equals the existing matrix:
A0 = A,
R® =i

Step 1: Column scaling. Set
n=n+1,
p;(R*(""V) = 37, pyy R{ "™V
n; (R D) =3 nyR] ™Y

g*(m) _ Y/ ] ) +ip, R D)n, (R*C71)
i 2p; (R*0-1)

Step 2: Row scaling. Set
Pi(S*(n)) = Zj pz‘jsj‘(n)
R _ ¥/ (WE)? 4P (S 0)ni(8°()
i 2p;(S*(™)
A*(n) — R*nA*(n—O.ES)

Note the difference between iteration counter n and element from matrix N, i.e. n;;.
This approach satisfies the following conditions from Section 2.3:

1. incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

2. allow considering the reliability of the initial estimate;

3. be able to handle negative values and to preserve the sign of matrix elements if required;

3.1.6 KRAS

KRAS stands for Konfliktfreies RAS approach (Lenzen et al. (2009)). This approach is an extension
of the GRAS approach. In addition, it is able to balance SAMs under conflicting external information
and inconsistent constraints.

Assume a set of constraints. This might include row and column sum constraints, single elements
that are considered certain, constrained subsets of the SAM, preserving the negative sign of elements.
These constraints are gathered in the formulation

Ga=c. (8)

where a is the vectorization of coefficient matrix A. That is, square SAM matrix A consisting of
m rows and m columns is converted to one vector of size m - m. Matrix G gives information on the
sum of elements of a that should add up to the corresponding element in ¢. The number of rows in
G indicate the number of constraints. We assume G has n. rows.

Under the GRAS approach, the iteration stops when Ga comes sufficiently close to c, i.e.

[Ga —c|| < dl|c]| (9)
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for a sufficiently small 5. However, in case some of the constraints are conflicting, the algorithm
will not find a solution that satisfies all constraints. Adding extra iterations, does not improve the
distance between ¢ and Ga anymore. In this situation, GRAS algorithm allows for adjustment of
the constraint, namely the level of c. An amount aoj can be added or subtracted to constraint
¢k for all constraints k = {1,---n.}. Scalar 0 < a < 1 is free of choice and o}, corresponds to
predefined standard deviations of ¢x. In the GRAS approach, there is one scalar for each constraint
k. This approach iteratively updates scalar r; and vector element a;. Where [ indicates the placing
in vectorized a. The GRAS iteration process is described below:

Step 0: Initialize. Set n=0. Initial value of the coefficient matrix equals the existing matrix:

A0 — A,
i

= Ck}
Step 1: Updating of scalars r and ¢
T(”) _ CZ+\/(CI(!L) 244, ghal T S gnar !
zzlg:l a;'” !
n n—1 n—1 n—1 . n—1
e = e —sgn(el ™Y = X g - min(lef Y = 32, guaf" V], a0)

Step 2: Updating vectorized matrix a
al(n) = al(n_l) (r(n))SQn(gkl)

Element g,jl refers to positive values of gi; and g, refers to negative elements.
This approach satisfies the following conditions from Section 2.3:

e incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

e allow considering the reliability of the initial estimate;
e be able to handle negative values and to preserve the sign of matrix elements if required;

e be able to handle conflicting external data.

3.2 Constrained optimization

Besides iterative methods, constrained optimization methods also aim at solving balancing problems.
In general, the most basic balancing problem solved using constrained optimization is given by

min f(A,AO) s.t. Zaijyj = Yi, Zaij = 1, Qi Z 0. (10)
J %

Objective function f(-) is minimized under row-sum and columns-sum constraints. In this section
we review a couple of constrained optimization methods.

3.2.1 Cross-entropy method

Tterative RAS approach and constrained optimization approaches are relatively close to each other.
Bacharach shows that the conventional RAS methodology can be written as a constrained optimiza-
tion problem, where the objection function is given by

(A, A) Zauln a(zg) (11)

This objective function is also known as the cross-entropy (CE) function. Matrix A is an initial
guess for best estimate A*. A SAM from a previous period can be used as first guess (Golan
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and Vogel (2000)). In constrained optimization problems Lagrangian L is defined and minimized in
order to find the technical coefficients a;; that minimizes the cross-entropy function. In this approach
coefficients a;; are treated as probabilities, and the A is viewed as probability distribution. The
cross-entropy minimization gives estimates for a posterior probability distribution (A*) which is
closest to prior information (A(?)) Rodrigues (2014)). Lagrangian L of equation (10) and (11) is
defined by

L=fAA")+ Z Ai(yi — Zaijyj) + Zuj(l - Z%j% (12)
i j j i
and estimated technical coefficients after optimization are given by:
0 *
. a) exp(\y))
4T 0 .
> Ay exp(Ajy;)
Robinson et al. (2001) compare this expression to Bayes’ Theorem, where posterior (a;;) equals

prior (aE?)) multiplied by the likelihood function divided by a normalization factor. The likelihood

function expresses the probability of drawing the data given estimated parameters.

(13)

Up to this point, the CE-estimator is equal to the basic RAS procedure. Only information on row
and column sums is required. Robinson et al. (2001) point out that CE-estimation is able to include
more information in the constraints:

e Economic aggregates. For example, exogenous information on aggregated subsets of products
and sectors. Assume aggregation matrix G that gives information on the sum of elements in
T that should add up to aggregate . Element g;; is equal to 1 if corresponding SAM-element
t;; is part of the aggregation, and zero otherwise. Assume k constraints, all constraints can be
added to objective function in equation (10). Constraint & is given by:

Zzgz(f)tij = Ck. (14)
g

Note that the column sum and row sum conditions are a special case of this formulation.

e Uncertainty in aggregates. One way to solve uncertainty in the aggregates in equation (14)
is by setting an upper or lower bound on the aggregate value. This is done by replacing the
equal-sign to an inequality sign:

Z Zgg?)tij < cg or Z Zgi(j’?)tij > Ck. (15)
i g i g

e Zeros. The RAS approach ensures that zeros in the initial matrix remain zero in the best
estimate matrix. A similar assumption can be posed for the CE-approach. For this, make use
of the property zln(z) = 0. In the current objective function, initial estimates equal to zero

imply division by zero. By replacing agg) with az(;)) + 9 and a;; with a;; + 6 (6 is sufficiently
small) this problem is overcome and a;; can be equal to zero.

This approach satisfies the following conditions from Section 2.3:

e incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

e allow considering the reliability of the initial estimate;

e be able to handle negative values and to preserve the sign of matrix elements if required;
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3.2.2  Mazimum entropy method

The main difference between the maximum entropy (ME) and the cross-entropy (CE) method is

that CE takes prior information on the initial estimates agg) into account. This prior information

could be taken from a SAM of a previous year. ME does not make use of prior information. That
is, a(?) = 1/m for a square coefficient matrix A of SAM T, that has dimension m by m (Golan and

Vogel (2000)).

The objective function of ME-estimation looks as follows

f(A,A©) Za” In(a;;). (16)

Replacing az(»;)) = 1/m in equation (13) gives the optimal estimates in ME-optimization. Note that

CE-estimation is a generalization of ME-estimation. The extra information that can be included for
CE, can also be added to the optimization function for ME.

This approach satisfies the following conditions from Section 2.3:

e incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

e allow considering the reliability of the initial estimate;

e be able to handle negative values and to preserve the sign of matrix elements if required;

3.2.3 General Cross-Entropy method

Golan and Vogel (2000) provides a variation of the traditional cross-entropy method, referred to as
the general cross-entropy (CE) method. The general CE optimizes transaction values (¢;;) rather
than coefficients (a;;).

Also, traditional CE treats coefficients a;; as probabilities, and coefficient matrix A as probability
distribution. General CE treats each element of SAM (¢;;) as a random variable that can take M

possible values: b;; = [bijl, . ,b;k], e by ) and is centered around bij*. These support vectors

can be different for every element in the SAM. For bj; it holds that b}, = tEJ), where tl(?) the
corresponding element in a first guess for T, which could be taken from a SAM of an earlier year.

For M = 3, b;; could have the following values [tz(»g) (1—7), tg)), tfg) (1+7)]. A relatively high value of

scalar r represents a situation of wide boundaries between which the best estimate could be placed.
A switch of sign is allowed for |r| > 1. For example, a positive value of initial element tgj), can
include negative values in its corresponding support vector. This might result in a negative best

estimate t; (Fernandez-Vazquez (2016)).

Each support vector by; is connected to a symmetric vector Wlth probabilities, qi; = [gij1,- - - , N M-
A simple example for situation M = 3 is given by qj; = £, 3 3 3] which placed equal probabilities
to each of the possible outcomes in b;j. A spiky distribution like q;; = [0.05,0.9,0.05] can be used

(0)

when initial element ¢;;° is considered certain. Under these conditions, elements in the initial matrix

T are equal to the expected value described in equation (17).

M
0
tz(j) = Z qijmbijm- (17)
m=1
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For target matrix T* (also known as ’best estimate’), the probabilities are unknown. The goal is to
find (posterior) probabilities pij = [pij1,- -+ ,Pjj, -+ ,Pijm] that satisfy

M
ti; = Z Pijmbijm, (18)
m=1

where q;; can be taken as an prior for py;.

Under classical CE, the objective function is optimized for coefficient a;; (see equation (11)). For
General CE, the objective function is given by

f(P.Q) = Zpijmzmp;ii“ ), (19)

igm

subject to the following conditions
th} = Zpijmbijm = Yis (20)
J Jjm

Zt:j = Zpijmbijm =Yj, (21)

where y; and y; represent the column and row sum respectively. Following the derivations of La-
grange optimization in Fernandez-Vazquez (2016), it is found that best estimate for the probability
matrix P is given by

Pijm = €XP(Tibijm ) Qijm €XP(Xibijm — 1), (22)

where m; and \; denote the Lagrange multipliers that correspond to equation (20) and (21) respec-
tively.

Scandizzo and Ferrarese (2015) applies the described approach to find the best estimate for SAM
of the Ttalian economy. Scandizzo and Ferrarese (2015) extends GCE by including Monte Carlo
bootstrap estimates of the probability distribution of all SAM parameters. This allows to include
exogenous information from for example time series of national accounts. Also, it takes historical
volatility of the main variables into account. For each set of parameters the SAM is balanced and a
best estimate is found. The average of all best estimates gives a final best estimate of the SAM of
the Italian economy.

One of the advantages of this approach is that it allows for switching of signs, if required.
This approach satisfies the following conditions from Section 2.3:

e incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

e allow considering the reliability of the initial estimate;

e be able to handle negative values and to preserve the sign of matrix elements if required;

3.2.4 (Generalized) Least Square Method

Least-Square method is an optimization approach that replaced the objective function of the general
cross-entropy method by
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f6,t0,0) = (6 = t°)S (6 — t°), (23)

where t denotes the vectorization of square coefficient matrix T, ;2 denotes a diagonal weight
matrix with variances on the diagonals, < o > < o > (Geschke et al.). Angled brackets <> denote
a diagonal matrix, and o is a vector with standard deviations o; corresponding to each column j.
Note, this implies that best estimate T* is determined given not only best guess T?, but also given
an uncertainty parameter. All constraints are collected in matrix multiplication

Gt = c, (24)

where t is the vectorization of SAM T. That is, SAM Matrix T consists of m rows and columns,
and is converted to one vector of size m - m. Matrix G gives information on the sum of elements
of t that should add up to the corresponding element in c. Setting up the Lagrangian gives best
estimate
t* =t" + . 2G'a", (25)
where « equals the first moment of the Lagrangian multiplier A. Best guess for o™ is the solution
of
(GSG')a* = —(Gt% 4 t*). (26)

The Least-Squares approach can be extended in a number of ways. In this section we extend the
approach by considering the reliability of initial estimates and dealing with conflicting information.
This extension of the Least-Square Method is described in Geschke et al., which relies on the approach
developed by van der Ploeg (1982) and Van der Ploeg (1988). The approach allows for the distinction
of two types of constraints: hard and soft constraints. Assume H hard and S soft constraints are
defined. Restructuring and prioritization of the constraints in equation 24 gives

G"hard Chard
t= . 27
( Gsoft Csoft ( )
The hard constraints should always hold, however the soft constraints can be violated. Assume

8soft k 1S one row of Ggogt that adds up to csofsk. Violation of constraint £ is given by error term
€, such that

Esoft,k 't = Csoft ke + €k (28)

Geschke et al. describes the intermediate derivations that give final constraint matrix G¢%5:

Ghard 0 t [ €Chard
(Gsoft _I) (€> N (Csoft> ’ (29)

GGLS{GLS _ (GLS (30)

That is,

where
G 0 t c
GLS _ hard GLS __ GLS _ [ Chard
(G ) () () o

By optimizing Equation 23 under assumption of constraints in Equation 30, optimal estimates for
T* are found. This approach takes into account the reliability of the initial estimates via definition
of soft and hard constraints, and deals with conflicting constraints via flexibility in C&%S,

Other extensions of the LS method are possible. Rampa (2008) extends the classical LS procedure
with a ’subjective’ variant. This procedure is flexible in the sense that it column and row sums should
not necessarily be given as exogenous, it allows for adding extra constraints. Also it considers the
reliability of the initial estimates by attaching weights to the ’first guess’ matrix that should be
balanced.
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This approach satisfies the following conditions from Section 2.3:
e Incorporate constraints on arbitrarily sized and shaped subsets of matrix elements.
e Consider the reliability of the initial estimate.
e Is able to handle negative values and is able to preserve the sign of matrix elements if required.

e Is able to handle conflicting information.

3.2.5 Linear method (Rodrigues (2014))

Rodrigues (2014) reports a sequence of methods that are derived by simplifying an ideal data prob-
lem. The starting point is a formalization of the data balancing problem as a set of accounting
identities, G, that linearly connect variables t, and constraints, k. Then the numbers reported
in statistical data are interpreted as an expected value of an underlying probability distribution
of which uncertainty information can be used to estimate second moments (covariances). Relative
cross-entropy minimization is applied to obtain a distribution whose first and second moments sat-
isfy all accounting identities. Because second moment data is scarce, the method recommended
for actual implementation assumes that only variances but not off-diagonal covariances are known,
leading to the linear method, which is in practice an iterative weighted least squares method, in
which coefficients of variation (and not variances) are used as weighing factors. This choice is jus-
tified by the interpretation that correlations are implicitly assumed to be close to unitary such that
the coefficient of variation of disaggregate and aggregate data is similar (an accounting identity
typically connects one aggregate datum to multiple disaggregate data). The linear method works as
follows.

A balanced system, t.,, would satisfy:

Gt =k

whereas the initial estimate, t, instead satisfies:

Gty £k

For iteration k > 0 the update rule is:

tiy1 =t + (5ﬁf:kG/a

In turn the vector of Lagrange multipliers, «, is determined as the solution of:

(Gity,) G'a=k — Gty

There might be a unique solution, otherwise a pseudo-inverse can be calculated. Finally, the adjust-
ment step § is calculated so that the relative adjustment is small for every variable.
t;,, =ty + 06, G

(5:min{1,e }
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where € is a small number. This procedure assumes that all variables are non-zero by definition,
implying that empties are excluded from the set of variables. This procedure also implies that
variables are not allowed to shift signs: if variables are meant to be allowed to shift signs then they
should be excluded from the set of variables used to determine 6.

The paper also considers that besides uncertainty information, which is summarized in vector u
(containing positive numbers, usually in the range from zero to one), the source data might also be
split into a hierarchy of data quality, such that higher-level data is kept constant while lower-level
data is adjusted sequentially.

The computational speed of Rodrigues (2014) can be further improved by parallel implementation
of the balancing algorithm as is shown in Silva (2015).

This approach satisfies the following conditions from Section 2.3:

e Incorporate constraints on arbitrarily sized and shaped subsets of matrix elements.

Consider the reliability of the initial estimate.

Is able to handle negative values and is able to preserve the sign of matrix elements if required.

Is able to handle conflicting information.

3.3 Discussion and Conclusions

This section discusses all balancing approaches and corresponding properties. An overview is given
in Table 3.3. Let us recall the six desirable properties - described in Section 2.3 - that an ideal
balancing approach could fulfill:

1. incorporate constraints on arbitrarily sized and shaped subsets of matrix elements, instead of
only fixing row and column sums;

2. allow considering the reliability of the initial estimate;

3. be able to handle negative values and to preserve the sign of matrix elements if required;
4. be able to handle conflicting external data;

5. uses limited computational time;

6. is able balance a four-dimensional table.

The only methods that are able to handle conflicting information are KRAS, General Cross-Entropy
procedure and the linear approach. As expected, there is no approach that is able to balance a
three-dimensional table. The balancing procedure choice for PANORAMA is an extension of the
linear approach. This choice is made for the following reasons. (1) it belongs to one of the three
procedures that satisfies most properties (2) contrary to GLS, the linear approach is solved in an
iterative manner, which gives insight in the path towards solution (3) the founder of this approach
is part of the PANORAMA team, which makes this approach the easiest to extend.

Table 3: Table with properties corresponding to balancing procedures
RAS MRAS ERAS TRAS GRAS KRAS CE ME GCE GLS LA

1 X X X X X X X X

2 X X X X X X X X X X
3 X X X X X X X X X X X
4T X X X
5 X XX
T T e
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